ЭЭГ головного мозга расшифровка показателей, норма и нарушения

Дельта ритм ээг соответствует

Основными нейрофизиологическими методиками, определяющими функциональное состояние головного мозга человека, на сегодняшний день являются следующие:

Электроэнцефалография (ЭЭГ) – для оценки функционального состояния коры головного мозга.

1. Установка для ЭЭГ

Электроэнцефалограмма (ЭЭГ) (электро- + греч. encephalos — головной мозг + …грамма) — график электрической активности головного мозга, получаемый в процессе электроэнцефалографии. Это исследование является ключевым в диагностике таких патологических состояний головного мозга, как эпилепсия, эпилептоидные абсансы и другие подобные заболевания, а также в исследовании физиологии сна.
Характеристики ЭЭГ
Для выделения на ЭЭГ значимых признаков её подвергают анализу. Основными понятиями, на которые опирается характеристика ЭЭГ, являются: средняя частота колебаний, их максимальная амплитуда и их фаза, также оцениваются различия кривых ЭЭГ на разных каналах и их временная динамика. Суммарная фоновая электрограмма коры и подкорковых образований мозга пациента, варьируя в зависимости от уровня филогенетического развития и отражая цитоархитектонические и функциональные особенности структур мозга, также состоит из различных по частоте медленных колебаний.
Ритмы ЭЭГ
Одной из основных характеристик ЭЭГ является частота. Однако из-за ограниченных перцепторных возможностей человека при визуальном анализе ЭЭГ, применяемом в клинической электроэнцефалографии, целый ряд частот не может быть достаточно точно охарактеризован оператором, так как глаз человека выделяет только некоторые основные частотные полосы, явно присутствующие в ЭЭГ. В соответствии с возможностями ручного анализа была введена классификация частот ЭЭГ по некоторым основным диапазонам, которым присвоены названия букв греческого алфавита (альфа — 8—13 Гц, бета — 14—40 Гц, тета — 4—6 Гц, дельта — 0,5—3 Гц, гамма — выше 40 Гц и др.).В зависимости от частотного диапазона, но также и от амплитуды, формы волны, топографии и типа реакции различают ритмы ЭЭГ, которые также обозначают греческими буквами. Например, альфа-ритм, бета-ритм, гамма-ритм, дельта-ритм, тета-ритм, каппа-ритм, мю-ритм, сигма-ритм и др. Считается, что каждый такой «ритм» соответствует некоторому определённому состоянию мозга и связан с определёнными церебральными механизмами (Рис.2).

Рис.2. Основные стадии бодрствования, различимые на электроэнцефалограмме человека. Активное бодрствование: десинхронизированная кривая, быстрая низковольтная активность. Диффузное бодрствование: альфа-ритм (8-12 гц) в виде характерных веретен.
Сон. Стадия 1: очень легкий сон, альфа-активность уменьшается, частота убывает (тета-ритм). Стадия 2: легкий сон со вспышками сигма-активности (8-15 гц), называемыми веретенами, появление потенциалов, вызванных внешними стимулами.
Стадия 3: появление полиморфных дельта-волн (1-3 гц).
Стадия 4: глубокий сон, генерализация мономорфных дельта-волн.
Стадия 5: парадоксальный (вероятно, глубокий) сон, характеризующийся ЭЭГ, не отличимой от ЭЭГ бодрствования. (Об этом последнем состоянии судят по другим критериям: движениям глаз, падению мышечного тонуса и т. д.).

Эхоэнцефалография (ЭхоЭГ)- для оценки изменений в тканях мозга

Эхоэнцефалография — это метод распознавания изменений в тканях головного мозга с помощью ультразвука с частотой от 0,5 до 15 МГц. Звуковые волны такой частоты обладают способностью проникать сквозь ткани организма и отражаются от всех поверхностей, лежащих на границе тканей разного состава и плотности. Ультразвуковой пучок с помощью зафиксированного в определенных точках головы зонда направляется в исследуемую часть головного мозга, отраженный сигнал обрабатывается электронным устройством, а результат выдается на экране осциллоскопа в виде кривой (эхог-раммы) с пиками на прямой линии. Высота пика соответствует акустической плотности среды, а расстояние между пиками — границам раздела между средами.
Эхоэнцефалография широко применяется для распознавания болезней головного мозга: объемных процессов — опухолей, абсцессов, кист, гематом и др., а также для диагностики повышения внутричерепного давления. Для проведения эхоэнцефалографии чаще всего не требуется специальная подготовка больного. Кожу над исследуемой областью, чтобы исключить поверхностные помехи, смазывают специальным гелем, хорошо проводящим ультразвук.

Рис.3. Эхоэнцефалограф

Реоэнцефалография (РеоЭГ)- для оценки изменений в системе кровообращения головного мозга.

Реоэнцефалография (РЭГ) (греч. rheos — течение + греч. enkephalos — головной мозг + греч. grapho — писать, изображать) — неинвазивный метод исследования сосудистой системы головного мозга, основанный на записи изменяющейся величины электрического сопротивления тканей при пропускании через них слабого электрического тока высокой частоты.
Реоэнцефалографическое исследование позволяет получать объективную информацию о тонусе, эластичности стенки и реактивности сосудов мозга, периферическом сосудистом сопротивлении, величине пульсового кровенаполнения. Достоинства метода — его относительная простота, возможность проведения исследований практически в любых условиях и в течение длительного времени, получение раздельной информации о состоянии артериальной и венозной систем мозга и о внутримозговых сосудах различного диаметра.
Применение
Характерные изменения РЭГ наблюдаются при внутричерепной гипертензии; они отражают соответствующие венозные и ликвородинамические нарушения. Обычно трудно поддающаяся объективизации сосудистая дистония проявляется на РЭГ картиной неустойчивого, меняющегося в течение короткого периода времени сосудистого тонуса. Полезную информацию удается получить с помощью РЭГ при острых и хронических сосудистых поражениях — нарушении проходимости магистральных сосудов, острых нарушениях мозгового кровообращения и их последствиях, вертебробазилярной недостаточности. Важной является возможность использования РЭГ для оценки коллатерального кровоснабжения. Наиболее часто метод используется для распознавания атеросклероза мозговых сосудов и оценки степени его выраженности. Важные данные исследование дает при острой черепно-мозговой травме, в частности для выявления субдуральной гематомы, при мигрени, для контроля эффективности проводимого лечения, объективизации действия лекарственных веществ, особенно вазотропного характера, и др. Перспективным является использование полиреографии (многоканальной реографии), расширяющей диагностические возможности метода и позволяющей изучить компенсаторно-приспособительные механизмы реакций при различных острых состояниях .


Рис. 4. Установка для РЭГ

Омегаметрия
Для оценки функционального состояния высшей нервной деятельности разрабатывается также ряд методик, построенных на регистрации медленных и сверхмедленных потенциалов с коры головного мозга и подкорковых структур.
Одним из таких методов является омегаметрия- регистрация сверхмедленных потенциалов головного мозга, используемая для определения уровня бодрствования, адаптационно- компенсаторных возможностей и резервов организма (Рис. 5)

Рис.5. Регистрация омегапотенциала во время наркоза.
Сущность метода омегаметрии состоит в количественном дифференцировании уровней активного бодрствования, определении особенностей адаптивного поведения, системных реакций и адаптационных возможностей организма к текущим психическим и физическим нагрузкам по параметрам одного из видов сверхмедленных физиологических процессов (СМФП) милливольтового диапазона (омега-потенциала) от 0 до 0,5 Гц (Рис. 6). С помощью метода омегаметрии выявляют интегративный показатель, характеризующий меру координированности межорганного и межтканевого нейрогуморального взаимодействия при ведущей роли центральной и вегетативной нервной системы .

Читайте также:  Для чего перед родами принимать Но-шпу


Рис. 6. Пример записи сверхмедленных потенциалов головного мозга.

Основными нейрофизиологическими методиками, определяющими функциональное состояние головного мозга человека, на сегодняшний день являются следующие:

4.1. Электроэнцефалография (ЭЭГ) – для оценки функционального состояния коры головного мозга (Рис. 25).

Рис.25. Установка для ЭЭГ

Электроэнцефалограмма (ЭЭГ) (электро- + греч. encephalos — головной мозг + …грамма) — график электрической активности головного мозга, получаемый в процессе электроэнцефалографии. Это исследование является ключевым в диагностике таких патологических состояний головного мозга, как эпилепсия, эпилептоидные абсансы и другие подобные заболевания, а также в исследовании физиологии сна.

Характеристики ЭЭГ

Для выделения на ЭЭГ значимых признаков её подвергают анализу. Основными понятиями, на которые опирается характеристика ЭЭГ, являются: средняя частота колебаний, их максимальная амплитуда и их фаза, также оцениваются различия кривых ЭЭГ на разных каналах и их временная динамика. Суммарная фоновая электрограмма коры и подкорковых образований мозга пациента, варьируя в зависимости от уровня филогенетического развития и отражая цитоархитектонические и функциональные особенности структур мозга, также состоит из различных по частоте медленных колебаний.

Ритмы ЭЭГ

Одной из основных характеристик ЭЭГ является частота. Однако из-за ограниченных перцепторных возможностей человека при визуальном анализе ЭЭГ, применяемом в клинической электроэнцефалографии, целый ряд частот не может быть достаточно точно охарактеризован оператором, так как глаз человека выделяет только некоторые основные частотные полосы, явно присутствующие в ЭЭГ. В соответствии с возможностями ручного анализа была введена классификация частот ЭЭГ по некоторым основным диапазонам, которым присвоены названия букв греческого алфавита (альфа — 8—13 Гц, бета — 14—40 Гц, тета — 4—6 Гц, дельта — 0,5—3 Гц, гамма — выше 40 Гц и др.).В зависимости от частотного диапазона, но также и от амплитуды, формы волны, топографии и типа реакции различают ритмы ЭЭГ, которые также обозначают греческими буквами. Например, альфа-ритм, бета-ритм, гамма-ритм, дельта-ритм, тета-ритм, каппа-ритм, мю-ритм, сигма-ритм и др. Считается, что каждый такой «ритм» соответствует некоторому определённому состоянию мозга и связан с определёнными церебральными механизмами (Рис.26) [1].

Рис.26. Основные стадии бодрствования, различимые на электроэнцефалограмме человека. Активное бодрствование: десинхронизированная кривая, быстрая низковольтная активность. Диффузное бодрствование: альфа-ритм (8-12 гц) в виде характерных веретен.

Сон. Стадия 1: очень легкий сон, альфа-активность уменьшается, частота убывает (тета-ритм). Стадия 2: легкий сон со вспышками сигма-активности (8-15 гц), называемыми веретенами, появление потенциалов, вызванных внешними стимулами.

Стадия 3: появление полиморфных дельта-волн (1-3 гц).

Стадия 4: глубокий сон, генерализация мономорфных дельта-волн.

Стадия 5: парадоксальный (вероятно, глубокий) сон, характеризующийся ЭЭГ, не отличимой от ЭЭГ бодрствования. (Об этом последнем состоянии судят по другим критериям: движениям глаз, падению мышечного тонуса и т. д.).

4.2. Эхоэнцефалография (ЭхоЭГ) для оценки изменений в тканях мозга (Рис.27). Эхоэнцефалография — это метод распознавания изменений в тканях головного мозга с помощью ультразвука с частотой от 0,5 до 15 МГц. Звуковые волны такой частоты обладают способностью проникать сквозь ткани организма и отражаются от всех поверхностей, лежащих на границе тканей разного состава и плотности. Ультразвуковой пучок с помощью зафиксированного в определенных точках головы зонда направляется в исследуемую часть головного мозга, отраженный сигнал обрабатывается электронным устройством, а результат выдается на экране осциллоскопа в виде кривой (эхог-раммы) с пиками на прямой линии. Высота пика соответствует акустической плотности среды, а расстояние между пиками — границам раздела между средами.

Эхоэнцефалография широко применяется для распознавания болезней головного мозга: объемных процессов — опухолей, абсцессов, кист, гематом и др., а также для диагностики повышения внутричерепного давления. Для проведения эхоэнцефалографии чаще всего не требуется специальная подготовка больного. Кожу над исследуемой областью, чтобы исключить поверхностные помехи, смазывают специальным гелем, хорошо проводящим ультразвук.

4.3. Реоэнцефалография (РеоЭГ) — для оценки изменений в системе кровообращения головного мозга (Рис.28).

Реоэнцефалография (РЭГ) (греч. rheos — течение + греч. enkephalos — головной мозг + греч. grapho — писать, изображать) — неинвазивный метод исследования сосудистой системы головного мозга, основанный на записи изменяющейся величины электрического сопротивления тканей при пропускании через них слабого электрического тока высокой частоты.

Реоэнцефалографическое исследование позволяет получать объективную информацию о тонусе, эластичности стенки и реактивности сосудов мозга, периферическом сосудистом сопротивлении, величине пульсового кровенаполнения. Достоинства метода — его относительная простота, возможность проведения исследований практически в любых условиях и в течение длительного времени, получение раздельной информации о состоянии артериальной и венозной систем мозга и о внутримозговых сосудах различного диаметра.

Применение

Характерные изменения РЭГ наблюдаются при внутричерепной гипертензии; они отражают соответствующие венозные и ликвородинамические нарушения. Обычно трудно поддающаяся объективизации сосудистая дистония проявляется на РЭГ картиной неустойчивого, меняющегося в течение короткого периода времени сосудистого тонуса. Полезную информацию удается получить с помощью РЭГ при острых и хронических сосудистых поражениях — нарушении проходимости магистральных сосудов, острых нарушениях мозгового кровообращения и их последствиях, вертебробазилярной недостаточности. Важной является возможность использования РЭГ для оценки коллатерального кровоснабжения. Наиболее часто метод используется для распознавания атеросклероза мозговых сосудов и оценки степени его выраженности. Важные данные исследование дает при острой черепно-мозговой травме, в частности для выявления субдуральной гематомы, при мигрени, для контроля эффективности проводимого лечения, объективизации действия лекарственных веществ, особенно вазотропного характера, и др. Перспективным является использование полиреографии (многоканальной реографии), расширяющей диагностические возможности метода и позволяющей изучить компенсаторно-приспособительные механизмы реакций при различных острых состояниях [2].

Рис. 28. Установка для РЭГ

4.4. Омегаметрия

Для оценки функционального состояния высшей нервной деятельности разрабатывается также ряд методик, построенных на регистрации медленных и сверхмедленных потенциалов с коры головного мозга и подкорковых структур.

Читайте также:  ПРИ ЗАШКАЛИВАЮЩЕМ ГРАДУСНИКЕ Наука и жизнь

Одним из таких методов является омегаметрия— регистрация сверхмедленных потенциалов головного мозга, используемая для определения уровня бодрствования, адаптационно- компенсаторных возможностей и резервов организма (Рис. 29)

Рис.29. Регистрация омегапотенциала во время наркоза.

Сущность метода омегаметрии состоит в количественном дифференцировании уровней активного бодрствования, определении особенностей адаптивного поведения, системных реакций и адаптационных возможностей организма к текущим психическим и физическим нагрузкам по параметрам одного из видов сверхмедленных физиологических процессов (СМФП) милливольтового диапазона (омега-потенциала) от 0 до 0,5 Гц [3, 4] (Рис. 30). С помощью метода омегаметрии выявляют интегративный показатель, характеризующий меру координированности межорганного и межтканевого нейрогуморального взаимодействия при ведущей роли центральной и вегетативной нервной системы [3].

Рис. 30. Пример записи сверхмедленных потенциалов головного мозга.

Особенности спектров мощности ЭЭГ при переживании чувства страха

Рубрика: Биология

Статья просмотрена: 6365 раз

Библиографическое описание:

Спиридонова, М. Д. Особенности спектров мощности ЭЭГ при переживании чувства страха / М. Д. Спиридонова. — Текст : непосредственный // Молодой ученый. — 2013. — № 8 (55). — С. 130-132. — URL: https://moluch.ru/archive/55/7538/ (дата обращения: 25.08.2020).

Страх — это неотъемлемая часть жизни каждого из нас. Страх является эмоцией большой силы, которая оказывает заметное влияние на восприятие, мышление и поведение индивида.

Нормальный страх имеет биологическую значимость, так как охраняет нас от многих опасностей, без чувства страха мы оказались бы легко уязвимы. Страх средней степени даже полезен, потому что готовит человека к столкновению с реальными опасностями и будущими ограничениями.

Высшая форма страха—ужас— дезорганизует поведение человека, сопровождается подавленным состоянием, депрессией и может перейти в фобию.

Вопрос о страхе оставался и остаётся в центре внимания практикующих аналитиков, которые за это время, не пришли к единому и окончательному решению этого вопроса, но сумели задать его таким образом, чтобы дать повод для дальнейшего размышления, а не поставить в нём точку.

Эмоциональные состояния человека находят отражение в электроэнцефалограмме головного мозга (ЭЭГ) скорее всего в изменении соотношения основных ритмов: дельта, тета, альфа и бета. Изменения ЭЭГ, характерные для эмоций, наиболее отчетливо возникают в лобных областях. По некоторым данным отрицательные эмоциональные состояния сопровождаются усилением альфа-активности в правом и усилением дельта-активности в левом полушарии [1].

Первые исследования электрической активности показали, что энцефалограмма головного мозга слагается из ритмических процессов. Ганс Бергер зарегистрировал в 1929 г [2] электроэнцефалограмму (ЭЭГ) человека, выделив альфа- и бета-ритмы. Во всех аналогичных работах обращалось внимание на доминирующие частоты, а малоамплитудные, как правило уходили из поля зрения исследователей. Среди всех ритмов ЭЭГ наиболее вероятно отражение знака эмоционального реагирования в альфа-, бета- и тета-ритме.

Что касается альфа-ритма (частота 8–13 Гц), есть мнение, что он генетически обусловлен и высоко индивидуализирован. В некоторых исследованиях было установлено, что альфа-ритм подавляется при эмоциональных переживаниях [3], а смена его на дельта-ритм отражает развитие стрессовой реакции. Другие данные свидетельствуют о специфичности отражения различных эмоций в мощности альфа-ритма. Например, такой результат был получен Костюниной и Куликовым, которые исследовали частотные характеристики спектров ЭЭГ при воображении испытуемым различных эмоций. Они получили следующие данные: при «страхе» и «горе» происходит подавление альфа-ритма, а при «радости» и «гневе» — возрастание [4]. Бета-ритм (частота 18–30 Гц) значительно усиливается при различных видах деятельности, связанных с активацией рабочих механизмов мозга. Есть мнение, что наиболее сильное увеличение мощности бета-ритма происходит при стрессе [5]. В работах Афтанаса с соавторами (Aftanas L. I., 2005) было показано, что некоторые особенно интенсивные эмоции — отвращение и страх — вызывают соответственно десинхронизацию в полосе альфа-2 (10–12 Гц) и бета-1 (12–18 Гц) ритмики и изолированно бета-1 ритмики в височно-теменных областях правого полушария. Видимо, таким образом отражается роль неспецифической активации в осуществлении эмоциональной реакции. Также было зафиксировано усиление бета-активности при предъявлении больным объекта фобии [6]. Тета-ритм (4–8 Гц). Вопрос о функциональном значении тета-ритма по настоящее время является предметом дискуссий. Однако существуют факты, позволяющие рассматривать этот ритм как показатель состояния психофизиологической направленности человека, индикатор эмоционального возбуждения, «ритм напряжения» [7]. Несмотря на недостаточность сведений о функциональном значении частоты тета-ритма, есть основания связывать рост этого показателя с процессами снижения торможения (или роста возбуждения). Тета-ритм особенным образом связан с процессом запоминания, так как одной из структур, генерирующих тета-ритм, является гиппокамп, участвующий в процессе формирования следов долговременной памяти. В гиппокампе тета-ритм имеет максимальную амплитуду и выраженность Фактически, в экспериментах по «обусловливанию страха» тета-активность (4–7 Гц) охватывает амигдалярно-гиппокампальные пути. Тем не менее, эта активность совпадает во времени исключительно с образованием условного рефлекса, а не при актуализации аффективной памяти или поведенческом проявлении страха. Дельта-ритм (0,5–4 Гц) проявляется отчетливо при тормозных состояниях коры и опухолях мозга. Существуют также данные об изменении гамма-ритма (30–90 Гц) под влиянием эмоциональных реакций. Так было показано асимметричное изменение в гамма-ритме при предъявлении положительной, отрицательной и нейтральной эмоциогенной стимуляции [6]. Мощность ритмики 30–50 Гц была максимальной в теменных отведениях при отрицательной стимуляции. Также отмечено усиление гамма-ритма в лобных отведениях при эмоциональной стимуляции безотносительно знака. Усиление гамма-ритма в левой лобной доли при предъявлении испытуемым объекта фобии [6]может объясняться общим изменением уровня активации, с дополнительным участием таламуса. Таким образом, по данным разных авторов эмоциональные реакции, состояния тревожности, напряженности и стресса находят свое отражение во всем частотном диапазоне ЭЭГ. Как отмечает Русалова (1998), можно говорить об определенных паттернах ритмики ЭЭГ, специфичных для различных эмоций.

На базе Удмуртского государственного университета были проведены исследования по изучению особенностей спектров мощности ЭЭГ при переживании чувства страха.

Цель данной работы изучение нейрофизиологических механизмов переживания чувства страха у лиц с различным уровнем страха.

Читайте также:  Пульмонолог Екатерина Гончар; Если в; бронхах накопилось много вязкой мокроты, при вдохе и; выдохе с

Исследование выполнялось на 43 здоровых испытуемых студентах девушках в возрасте от 19 до 32 лет. Регистрация ЭЭГ при помощи Электроэнцефалографа — анализатора ЭЭГ — 21/26 «Энцефалан — 131 -03». В качестве показателя степени эмоционального напряжения использовали увеличение частоты сердечных сокращений. Для записи ЭКГ применяли 2-е стандартное отведение. Запись ЭЭГ, сопровождающаяся эмоциональным переживанием отрицательного характера, основанная на модели ожидания болевого раздражения электрическим током. Также запись ЭЭГ производилась в состоянии покоя (без болевых раздражений) до болевого раздражения током — фон и после болевого раздражения — последействие. А именно проводилась регистрация ЭЭГ по 21 отведению, запись производилась монополярно. Индифферентный электрод располагался на мочке уха. Регистрировали электрические потенциалы мышц, управляющие движениями глаз с помощью электроокулограммы (ЭОГ).

Такая методика была выбрана неслучайна. Боль — первый и важнейший из естественных активаторов страха. Любой объект, событие или ситуация, связанные с переживанием боли, могут стать условными стимулами, повторная встреча с которыми напоминает индивиду о прошлой ошибке и о переживании боли. О специфичности эксперимента испытуемому сообщалось непосредственно перед самим исследованием.

Результаты настоящего исследования позволили выявить различное отражение в ЭЭГ амплитудных характеристик при переживании негативных эмоций (страх, испуг, тревога). В классическом варианте в результате исследования у испытуемых вследствие переживания чувства страха должно наблюдаться торможение ЦНС (уменьшение мощности бета-ритма, увеличение мощности дельта-ритма).

В проведённом исследовании получилось, что испытуемые переживают различные эмоции. Картина распределения мощности не говорит об однозначном чувстве страха. В полученные результаты не указывают на процессы ярко вызывающие торможение ЦНС по сравнению с фоном и последействием (ПД) (см. рис.1).

Альфа-ритм традиционно рассматривался как ритм покоя, ритм «холостого хода» [3]. Однако, как показали многочисленные исследования, колебания мощности в α- полосе могут дать ценную информацию не только для оценки функционального состояния мозга, но и об изменении активности соответствующих мозговых образований, вовлечённых в определённую деятельность [8]. В получившихся результатах происходит уменьшение мощности α-ритма (α1,α2,α3) в пробах по сравнению с фоном, говорит о неспецифическом росте активации ЦНС. На ряду с этим происходит уменьшение Тета-ритма, что скорее всего также указывает на повышение уровня неспецифической активации ЦНС.

Увеличение Дельта-ритма говорит о развитии в ЦНС тормозных процессов, уменьшение мощности Бета-ритма такжесвидетельствует о торможении ЦНС. В итоге на фоне роста неспецифической активности ЦНС, активность коры снижается.

На основании данных о природе электрической активности мозга (а именно, в общих чертах: более быстрые волны (бета, альфа) генерируются в более поверхностных структурах мозга, более медленные (тета, дельта) в более глубоких, кроме того, известно, что кора принимает участие в модуляции всех корковых ритмов), можно сказать, что снижение мощности альфа ритма и рост мощности дельта ритма при переживании чувства страха отражает реакцию активации. Учитывая локализацию в центральных областях, эти изменения можно интерпретировать как усиление активности подкорковых лимбических структур Скорее всего в данном случае испытуемые испытывают страх, который побуждает к действию, т. к. происходит активация подкорковых структур и некоторые признаки торможения коры больших полушарий. В связи с этим страх, который испытывают испытуемые побуждает их на моторные действия, т. е. активация избегания из той ситуации, в которую они попали.

Страх диктует стратегию поведения в сложных опасных ситуациях. Он отражается в смене настроения и влияет на мотивацию и поведение, обеспечивает сохранение организма от потенциальной или реальной опасности.

1. Беленков Н. Ю., Вальдман А. В. Экспериментальная нейрофизиология эмоций. «Наука» Ленинград 1972.

2. Hinrichs H.,Mashleidt W. Basic emotions reflected in EEG- coherences / Int. J. Psychophysiology. 1992 v.13

3. Коган А. Б. Выражение процессов ВНД в электрических потенциалах коры мозга при свободном поведении животного// ЭЭГ исследования ВНД. М.: АН СССР, 1962.

4. Костюнина М. Б., Куликов М. А. Частотные характеристики спектров ЭЭГ при эмоциях // Журнал ВНД 1995. Т. 45. № 3

5. Ильюченок И. Р. Различия частотных характеристик ЭЭГ при восприятии положитетельно– эмоциональных, отрицательно-эмоциональных и нейтральных слов // Журнал ВНД. 1996 Т. 46. № 3

6. Хомская Е. Д., Батова Н. Я. Мозг и эмоции (нейропсихологическое исследование). М.: Изд-во МГУ, 1992.

7. Анохин П. К. Эмоции.—- БМЭ, 2-е изд., 1964, т. 35

8. Русалова М. Н., Костюнина М. Б. Отражение в межполушарном распределении частотно-амплитудных показателей ЭЭГ силы эмоционального переживания // Физиология человека. 2000. Т. 26. № 1.

Ритмы ЭЭГ

Электрические колебания, регистрируемые в электроэнцефалограмме (ЭЭГ), отличаются по частоте, продолжительности, амплитуде и форме. Различают четыре основных типа ритмов ЭЭГ.

Основные ритмы ЭЭГ

Альфа-ритм — регулярный ритм синусоидальной формы, с частотой 8-13 гц (колебаний в 1 с) и амплитудой 20-80 мкВ (микровольт). Альфа-ритм регистрируется при отведении биопотенциалов от всех зон коры большого мозга, но более постоянно — от затылочной и теменной областей. Альфа-ритм регистрируется у человека в условиях физического и умственного покоя, обязательно при закрытых глазах и отсутствии внешних раздражений.

Бета-ритм имеет частоту колебаний 14-35 гц. Этот ритм низкоамплитудный: всего 10-30 мкВ. Он может быть зарегистрирован при отведении потенциалов от любых областей коры большого мозга, но более выражен в лобных долях.

При нанесении различных раздражений, открывании глаз, умственной работе альфа-ритм быстро сменяется бета-ритмом. Это явление смены редкого ритма на более частый получило название реакции активации (или десинхронизации).

Тета-ритм имеет частоту 4-7 гц, его амплитуда 100-150 мкВ. Он наблюдается в состоянии неглубокого сна, при кислородном голодании организма, при умеренном по глубине наркозе.

Дельта-ритм характеризуется медленными колебаниями потенциалов с частотой 0,5-3 гц, амплитуда его высокая: 250-300 мкВ, может доходить до 1000 мкВ. Он обнаруживается при отведении биопотенциалов от всех зон коры большого мозга, во время глубокого сна, а также при наркозе. У детей до 7 лет дельта-ритм может быть зарегистрирован и в бодрствующем состоянии.

Ссылка на основную публикацию
Эхинацея лечебные полезные свойства
ТОП-6 лечебных растений для повышения иммунитета В листьях, стеблях растений, цветках содержатся разнообразные витамины, которые укрепляют иммунную систему. Главное —...
Эффективная диета при атрофическом гастрите желудка как правильно составить меню
Меню диеты при атрофическом гастрите желудка 24 Августа, 2018 Гастроэнтерология Павел Бибик Атрофический гастрит принадлежит к хронической форме заболевания желудка....
Эффективное лечение эндоцервикоза шейки матки в клинике в Москве
Эндоцервикоз шейки матки Эндоцервикоз – такое состояние, при котором на влагалищной части шейки матки разрастаются клетки и железы из цервикального...
Эхинацея пурпурная лекарственное растение, применение, отзывы, полезные свойства, противопоказания,
Эхинацея: польза и противопоказания при использовании Эхинацея — красивое растение, которое привлекает внимание яркими красками. Однако многие используют цветок не...
Adblock detector