Электрофорез и хроматография — Методы исследования в клинической биохимии

Методы исследования химической организации клетки

Люминесцентная микроскопия.

Индукция с помощью ультрафиолетового света флуоресценции химических компонентов клетки (естественных или введенных извне).

Применяется для прижизненного выявления в клетке биохимических компонентов, способных к флуоресценции — витаминов, пигментов, гормонов, антибиотиков. Кроме того, с помощью синтетических флуорохромов, специфически взаимодействующих с определенными химическими компонентами клетки (ДНК, РНК, липидами и др.), исследуют их внутриклеточную локализацию.

Дифференциальное центрифугирование.

Центрифугирование смеси, полученной в результате разрушения клеток (ткани, органа), в специальных центрифугах при различных скоростях вращения ротора, что позволяет раздельно осаждать частицы с различной массой (ядра, оргаиеллы, макромолекулы). p>Применяется для получения чистых фракций различных субклеточных структур для последующего биохимического и биофизического исследований.

Электрофорез.

Движение заряженных частиц (макромолекул и др.), взвешенных в электролите, при наложении внешнего электрического поля; осуществляется в среде пористого наполнителя (хроматографическая бумага, гели); в зависимости от величины и знака заряда частиц они перемещаются к катоду или аноду и занимают совершенно определенное место (зону) (рис. 3.2).

Используется для разделения сложных смесей биополимеров — белков, нуклеиновых кислот и др.

Рентгеноструктурный анализ.

Основан на изучении дифракции, возникающей при взаимодействии рентгеновского излучения с кристаллическим образцом.

Рис. 3.2. Электрофореграмма смеси белков (каждому пятну соответствует определенная белковая фракция)

Применяется для исследования атомно-молекулярного строения биологических полимеров — пептидов, полисахаридов, нуклеиновых кислот.

5. Хроматография. Разделение смеси веществ за счет различий в их распределении в системе, состоящей из двух компонентов — подвижного (газовая или жидкая фаза) и неподвижного (твердая фаза или жидкость, связанная на инертном носителе).

Основные разновидности: жидкостная, газовая, тонкослойная хроматография.

Читайте также:  Плацента, формирование и функции плаценты

Используется для разделения и анализа смесей веществ, а также изучения их физико-химических свойств (массы и размеров молекул и др.).

Метод электрофореза в молекулярной биологии

Принципы гель-электрофореза

Метод электрофореза в геле использует разницу в размере и заряде различных молекул в образце. Образец ДНК или белка, подлежащий разделению, погружают в пористый гель, помещенный в ионную буферную среду. При приложении электрического поля каждая молекула, имеющая разный размер и заряд, будет проходить через гель с разной скоростью.

Пористый гель, используемый в этой технике, действует как молекулярное сито, которое отделяет большие молекулы от более мелких. Меньшие молекулы движутся быстрее по гелю, а более крупные медленнее. Подвижность частиц также определется их индивидуальным электрическим зарядом. Два противоположно заряженных электрода, которые являются частью системы, тянут молекулы к себе на основе их заряда.

Как это работает?

Гель, используемый в геле-электрофорезе, обычно изготавливают из материала, называемого агарозой, который представляет собой желатиновое вещество, экстрагированное из водорослей. Этот пористый гель можно использовать для отделения макромолекул разных размеров. Гель погружают в раствор солевого буфера в камеру электрофореза. Трис-борат-ЭДТА (ТВЭ) обычно используется в качестве буфера. Его основная функция — контролировать pH системы. Камера имеет два электрода — один положительный и другой отрицательный — на двух концах.

Образцы, которые необходимо проанализировать, затем загружают в маленькие лунки в геле с помощью пипетки. По завершении загрузки применяется электрический ток 50-150 В. Теперь заряженные молекулы, присутствующие в образце, начинают мигрировать через гель к электродам. Отрицательно заряженные молекулы движутся к положительному электроду, а положительно заряженные молекулы мигрируют к отрицательному электроду.

Скорость, с которой каждая молекула перемещается через гель, называется ее электрофоретической подвижностью и определяется главным образом ее чистым зарядом и размером. Сильно заряженные молекулы движутся быстрее, чем слабо заряженные. Меньшие молекулы работают быстрее, оставляя более крупные. Таким образом, сильный заряд и малый размер увеличивают электрофоретическую подвижность молекулы, а слабый заряд и большие размеры уменьшают подвижность молекулы. Когда все молекулы в образце имеют одинаковый размер, разделение будет основываться исключительно на их размере.

Читайте также:  С какого срока показывает тест на беременность точный результат

Трансиллюминатор

После завершения разделения гель окрашивается красителем, чтобы выявить полосы разделения. Бромид этидия представляет собой флуоресцентный краситель, обычно используемый в гелевом электрофорезе. Гель вымачивают в разбавленном растворе бромида этидия и затем помещают на УФ-трансиллюминатор для визуализации разделительных полос.

Полосы сразу проверяются или фотографируются для дальнейшего использования, поскольку они будут диффундировать в гель с течением времени. Краситель также может быть загружен в гель заранее, чтобы отслеживать миграцию молекул, как это происходит.

Применение гель-электрофореза

Гель-электрофорез широко используется в лабораториях молекулярной биологии и биохимии в таких областях, как судебная медицина, консервативная биология и медицина.

Ниже перечислены некоторые ключевые применения технологии:

  • При отделении фрагментов ДНК для отпечатков пальцев ДНК для расследования преступлений
  • Проанализировать результаты полимеразной цепной реакции
  • Проанализировать гены, связанные с определенной болезнью
  • В профилировании ДНК для проведения таксономических исследований для различения различных видов
  • При тестировании отцовства с использованием отпечатков пальцев ДНК
  • При изучении структуры и функции белков
  • При анализе устойчивости к антибиотикам
  • В методах блоттинга для анализа макромолекул
  • Изучая эволюционные отношения, анализируя генетическое сходство между популяциями или видами

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Методы изучения клетки

Методы изучения клетки

  1. Оптическая микроскопия (увеличение – 8 000 раз, минимальный размер объекта – 0,2 мкм).
  2. Электронная микроскопия (увеличение – 100 000 раз, толщина препаратов не больше 500 х 10-8 см).
  3. Туннельная микроскопия – алмазная игла сканирует препарат. В момент перекрывания электронных облаков иглы и молекул препарата компьютер регистрирует скачок электрического тока. После анализа полученных данных компьютер строит изображение на экране дисплея (разрешение – отдельные атомы).
  4. Флуоресцентная микроскопия – для изучения микроструктур клетки используют специальные флуоресцентные красители и флуоресцентный микроскоп.
  5. Сканирующая микроскопия – использование сканирующего электронного микроскопа для получения объёмных изображений клетки.
  6. Фазово-контрастная микроскопия – получение изображений прозрачных объектов с помощью оптического микроскопа за счет сдвига фаз электромагнитных волн.
  7. Интерференционная микроскопия – наблюдение неокрашенных прозрачных структур и вычисление их сухой массы.
  8. Химические методы.
  9. Центрифугирование – разделение частей клеток, отличающихся по удельному весу, с помощью центрифуги; выделение разных компонентов клетки и их исследование.
  10. Хроматография – метод, основанный на разной скорости движения через адсорбент растворенных в специальном растворе веществ; при пропускании такого раствора через адсорбент каждое вещество из смеси передвигается на определенное расстояние в зависимости от своей молекулярной массы (в качестве адсорбента используют волокна фильтровальной бумаги, порошок целлюлозы и др.).
  11. Электрофорез в геле – разделение смеси веществ в растворе с помощью электрического тока.
  12. Метод меченных атомов – введение радиоактивного изотопа какого-либо химического элемента в состав вещества для того, чтобы проследить путь его превращений в клетке.
  13. Метод культуры клеток и тканей – изучение живых клеток под микроскопом вне организма (рост, размножение, выделение факторов роста, получение клеточных гибридов и др.).
  14. Метод рекомбинантных ДНК – изучение тонких механизмов клеточных процессов, функций генов путем встраивания ДНК исследуемых объектов в генетический аппарат бактерий или вирусов (генная биоинженерия).
  15. Методы нанобиотехнологии.
Читайте также:  Тревожное расстройство - причины, симптомы, способы лечения и советы

Кириленко А. А. Биология. ЕГЭ. Раздел «Молекулярная биология». Теория, тренировочные задания. 2017.

Ссылка на основную публикацию
Электронейромиография; Городская поликлиника № 134
Электронейромиография (ЭНМГ) Электронейромиография (ЭНМГ) – современный и высокоинформативный инструментальный метод анализа функции состояния периферической нервной системы. Исследование может состоять из...
Экселон пластырь инструкция по применению, отзывы врачей и пациентов о ТТС
"Экселон" (пластырь): цена, отзывы и инструкция по применению Такие страшные недуги, как болезнь Альцгеймера, к сожалению, на сегодняшний день практически...
Экспертное мнение надо ли сдавать анализы на онкомаркеры и какие обследования действительно нужны
Диагностика рака шейки матки Рак шейки матки – заболевание, которое, в отличие от других онкологических патологий, можно диагностировать на ранней...
Электронная библиотека ДВГМУ КЛИНИКА, ДИАГНОСТИКА И ПРОГНОЗ ХИРУРГИЧЕСКОГО ЛЕЧЕНИЯ АДЕНОМ ГИПОФИЗА У
Аденома гипофиза Аденома гипофиза — это опухолевое образование доброкачественного характера, исходящее из железистой ткани передней доли гипофиза. Клинически аденома гипофиза...
Adblock detector